If it's not what You are looking for type in the equation solver your own equation and let us solve it.
65=(8y)^2+y^2
We move all terms to the left:
65-((8y)^2+y^2)=0
We get rid of parentheses
-8y^2-y^2+65=0
We add all the numbers together, and all the variables
-9y^2+65=0
a = -9; b = 0; c = +65;
Δ = b2-4ac
Δ = 02-4·(-9)·65
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{65}}{2*-9}=\frac{0-6\sqrt{65}}{-18} =-\frac{6\sqrt{65}}{-18} =-\frac{\sqrt{65}}{-3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{65}}{2*-9}=\frac{0+6\sqrt{65}}{-18} =\frac{6\sqrt{65}}{-18} =\frac{\sqrt{65}}{-3} $
| 4-(y+1)=y | | -14(y+5)=28 | | 3(2d-7)=27-8d | | x+1/4+2=10 | | 43x-43x=43 | | 124+352-12×8÷4+49÷7-5=n | | g=0,21=3g=1,05+2 | | g0+g1+g2=(1+g)² | | x3+x2=−2 | | 280x=10 | | 2x+350=540 | | 7÷5=x | | 5252x2+736x+123=0 | | A=20-2n | | x+2x+6x=9x=45 | | 4^(x+1)=128 | | A=|x+1|+24 | | 6x*2=12 | | 4x-18=10/4x | | 4x-18=10/4 | | 5x+5=10-2x | | v+2/2v+5=2+1/v+2 | | v+2/2v+3=2+1/v+2 | | v+2/2v+3=2+1/v+1 | | X2+2y=5 | | 2p^2+4p-30=0 | | 78x945+4200=N | | X*2+2y=5 | | 5x+12=7x+4 | | 13+6c=-99 | | 2(x+3)=(4x-1)=2+7 | | 12+8a=11 |